Sem-I-Math-CC-I(R&B)

No. of Printed Pages : 5

2023

Time - 3 hours

Full Marks - 60

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. The symbols used have their usual meaning.

GROUP - A

1. Answer <u>all</u> questions and fill in the blanks as required. $[1 \times 8]$

(a) Sin ho – cos ho = _____.

- (b) $\lim_{X \to \infty} \frac{\log x}{x} =$ _____.
- (c) $\int x e^{x} dx =$ _____.
- (d) How many loops are there in the curve $r = a \sin 2\theta$.
- (e) Write down the formula to find out the volume by cylindrical shells about the y-axis.

(f) The coordinates of foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ are _____ and

P.T.O.

(h)
$$\lim_{t \to \infty} \left\langle \frac{t^3 + 1}{4t^3 + 2}, \frac{1}{t} \right\rangle = \underline{\qquad}$$

<u>GROUP - B</u>

2. Answer any eight of the following.

[1½ × 8

- (a) State Leibnitz's rule.
- (b) Find out the parallel asymptote(s) of the curve x³ + y³ 3axy = 0.
- (c) How to know whether the curve r = f(θ) is symmetrical about the pole or not ?

(d) Evaluate
$$\int_{0}^{\pi/2} \sin^8 x \, dx$$
.

(f) Evaluate
$$\int_{0}^{1} x^{2} (1-x^{2})^{3/2} dx$$
.

(g) Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is revolved about the x-axis.

APVN-KNJ-Sem-I-23-Math(CC-1)/50

(h) Find the new coordinates of the point (2, 4) if the coordinate axes are rotated through an angle $\theta = 30^{\circ}$.

(i) Let
$$\vec{r}(t) = t^2 \hat{i} + e^t \hat{j} - (2\cos \pi t) \hat{k}$$
, then find $\int_0^1 \vec{r}(t) dt$.

(j) Prove that
$$\frac{d}{dt}[\vec{r}_1(t) + \vec{r}_2(t)] = \frac{d}{dt}[\vec{r}_1(t)] + \frac{d}{dt}[\vec{r}_2(t)]$$

<u>GROUP - C</u>

3. Answer any eight of the following.

[2 × 8

(a) Find the points of inflexion on the curve $y = (\log x)^3$.

(b) Determine
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

(c) Evaluate
$$\int \frac{dx}{x^{\frac{1}{2}} + x^{\frac{1}{3}}}$$
.

- (d) Obtain a reduction formula for $\int x^m \sin nx \, dx$.
- (e) Find the arc length of the curve $y = 3x^{\frac{3}{2}} 1$ from x = 0 to x = 1.
- (f) Find the area of the surface generated by revolving the curve $y = \sqrt{4 x^2}$, $-1 \le x \le 1$ aboout the x-axis.

P.T.O.

- (g) Find the rectangular coordinates of the point P whose polar cordinates are $(r, \theta) = (6, \frac{2\pi}{3})$. Draw a rough graph of it.
- (h) Calculate the scalar triple product $\vec{u} \cdot (\vec{v} \times \vec{w})$ and the vector triple product $\vec{u} \times (\vec{v} \times \vec{w})$ of the vectors $\vec{u} = 3\hat{i} - 2\hat{j} - 5\hat{k}$, $\vec{v} = \hat{i} + 4\hat{j} - 4\hat{k}$, $\vec{w} = 3\hat{j} + 2\hat{k}$.
- (i) Find $\vec{r}(t)$, given that $\vec{r}'(t) = \langle 3, 2t \rangle$ and $\vec{r}(1) = \langle 2, 5 \rangle$.
- (j) If $\vec{r}(t)$ is a differentiable vector-valued function in 2-space or 3-space, and $||\vec{r}(t)||$ is constant for all t, then prove that $\vec{r}(t) \cdot \vec{r}'(t) = 0$.

<u>GROUP - D</u>

Answer any four questions.

4. Find
$$(x^2 e^x \cos x)_n$$
. [6]

- 5. Trace : $y^2(a x) = x^3$, a > 0.
- 6. If $I_n = \int_0^{\pi/3} \tan^n x \, dx$, then show that $(n-1) (I_n + I_{n-2}) = (\sqrt{3})^{n-1}$.
- 7. Use cylindrical shells to find the volume of the solid generated when the region under $y = x^2$ over the interval [0, 2] is rotated about the line y = -1. [6]

[6

- Find out the surface area of a sphere of radius r.
- 10. Find out the tangential and normal components of acceleration. [6

[6]